Achiral Pyrazinone-Based Inhibitors of the Hepatitis C Virus NS3 Protease and Drug-Resistant Variants with Elongated Substituents Directed Toward the S2 Pocket

作者:Gising Johan; Belfrage Anna Karin; Alogheli Hiba; Ehrenberg Angelica; Akerblom Eva; Svensson Richard; Artursson Per; Karlen Anders; Danielson U Helena; Larhed Mats; Sandstrom Anja*
来源:Journal of Medicinal Chemistry, 2014, 57(5): 1790-1801.
DOI:10.1021/jm301887f

摘要

Herein we describe the design, synthesis, inhibitory potency, and pharmacokinetic properties of a novel class of achiral peptidomimetic HCV NS3 protease inhibitors. The compounds are based on a dipeptidomimetic pyrazinone glycine P3P2 building block in combination with an aromatic acyl sulfonamide in the P1P1' position. Structure-activity relationship data and molecular modeling support occupancy of the S2 pocket from elongated R-6 substituents on the 2(1H)-pyrazinone core and several inhibitors with improved inhibitory potency down to K-i = 0.11 mu M were identified. A major goal with the design was to produce inhibitors structurally dissimilar to the di- and tripeptide-based HCV protease inhibitors in advanced stages of development for which cross-resistance might be an issue. Therefore, the retained and improved inhibitory potency against the drug-resistant variants A156T, D168V, and R155K further strengthen the potential of this class of inhibitors. A number of the inhibitors were tested in in vitro preclinical profiling assays to evaluate their apparent pharmacokinetic properties. The various R6 substituents were found to have a major influence on solubility, metabolic stability, and cell permeability.

  • 出版日期2014-3-13