摘要

3D Reynolds-Averaged Navier-Stokes (RANS) simulations using an unsteady solver with steady inlet conditions are carried out to investigate the wind load and flow field around a ground mounted stand-alone photovoltaic (PV) system with 25 degrees panel tilt angle immersed in the atmospheric boundary layer (ABL) using the shear stress transport (SST) k-omega turbulence closure. Wind directions of the incoming flow are varied from 0 degrees to 180 degrees at 45 degrees intervals. Mean pressure coefficients on the surfaces of the PV panel are compared with the wind tunnel measurement by Abiola-Ogedengbe (2013) and an agreement within 46% is found. Coefficients of drag, lift and overturning moment for the PV system are computed from the numerical simulations. In terms of maximum uplift, 180 degrees is found to be the critical wind direction whereas in terms of overturning moments, 45 degrees and 135 degrees are the critical wind directions. The wind velocity and vorticity fields around the panel are correlated and analyzed with respect to the pressure distribution on the panel surfaces.

  • 出版日期2014-11