摘要

Due to its high energy generation capability and minimal environmental impact, wind energy is an elegant solution to the growing global energy demand. However, frequent atmospheric changes make it difficult to effectively harness the energy in the wind because maximum power extraction occurs at a different operating point for each wind condition. This paper proposes a parameter-independent intelligent power management controller that consists of a slope-assisted maximum power point tracking (MPPT) algorithm and a power limit search (PLS) algorithm for small standalone wind energy systems with permanent synchronous generators. Unlike the parameter-independent perturb & observe algorithms, the proposed slope-assisted MPPT algorithm preempts logical errors attributed to wind fluctuations by detecting and identifying atmospheric changes. The controller's PLS is able to minimize the production of surplus energy to minimize the heat dissipation requirements of the energy release mechanism by cooperating with the state observer and using the slope parameter to seek the operating points that result in the desired power rather than the maximum power. The functionality of the proposed energy management control scheme for wind energy systems is verified through simulation results and experimental results.

  • 出版日期2016-7