摘要

Cerium oxide nanomaterials (CeNMs), due to their excellent scavenging properties of reactive oxygen species (ROS), have gained great promise for therapeutic applications. A high level of ROS often degrades the potential of stem cells in terms of survivability, maintenance and lineage differentiation. Here we hypothesize the CeNMs may play an important role in protecting the capacity of stem cells against the oxidative insult, and the suppression mechanism of ROS level may depend on the internalization of CeNMs. We synthesized CeNMs with different directional shapes (aspect ratios) by a pH-controlled hydrothermal method, and treated them to stem cells derived from human dental pulp at various doses. The short CeNMs (nanoparticles and nanorods) were internalized rapidly to cells whereas long CeNMs (nanowires) were slowly internalized, which led to different distributions of CeNMs and suppressed the ROS levels either intracellularly or extracellularly under the H2O2-exposed conditions. Resultantly, the stem cells, when dosed with the CeNMs, were rescued to have excellent cell survivability; the damages in intracellular components including DNA fragmentation, lipid rupture and protein degradation were significantly alleviated. The findings imply that the ROS-scavenging events of CeNMs need special consideration of aspect ratio-dependent cellular internalization, and also suggest the promising use of CeNMs to protect stem cells from the ROS-insult environments, which can ultimately improve the stem cell potential for tissue engineering and regenerative medicine uses. Statement of Significance Oxidative stress governs many stem cell functions like self-renewal and lineage differentiation, and the biological conditions involving tissue repair and disease cure where stem cell therapy is often needed. Here we demonstrate the unique role of cerium oxide nanomaterials (CeNMs) in rescuing stem cell survivability, migration ability, and intracellular components from oxidative stress. In particular, we deliver a novel finding that nano-morphologically varied CeNMs show different mechanisms in their scavenging reactive oxygen species either intracellularly or extracellularly, and this is related with their different cellular internalizations. We used human dental pulp stem cells for the model study and proved the CeNMs were effective in controlling ROS level by means of scavenging intracellularly or extracellularly, which ultimately led to improving the intact therapeutic potential of stem cells. This work touches an important biological issue of nanomaterial interactions with stem cells under the conditions related with oxidative stress and the resultant damage. The correlation of shape factor in therapeutic nanomaterials with stem cell interaction and the oxidative stress-related functions will provide informative ideas in the design of CeNMs for cellular therapy.

  • 出版日期2017-3-1