摘要

Aroma-active higher alcohols and esters are produced intracellularly in the cytosol by fermenting lager yeast cells, which are of major industrial interest because they determine aroma and taste characteristics of the fermented beer. Wort amino acid composition and their utilization by yeast during brewer's wort fermentation influence both the yeast fermentation performance and the flavour profile of the finished product. To better understand the relationship between the yeast cell and wort amino acid composition, Plackett-Burman screening design was applied to measure the changes in nitrogen composition associated with yeast amino acids uptake and flavour formation during fermentation. Here, using an industrial lager brewing strain of Saccharomyces pastorianus, we investigated the effect of amino acid composition on the accumulation of higher alcohols and volatile esters. The objective of this study was to identify the significant amino acids involved in the flavour production during beer fermentation. Our results showed that even though different flavour substances were produced with different amino acid composition in the fermentation experiments, the discrepancies were not related to the total amount of amino acids in the synthetic medium. The most significant effect on higher alcohol production was exercised by the content of glutamic acid, aromatic amino acids and branch chain amino acids. Leucine, valine, glutamic acid, phenylalanine, serine and lysine were identified as important determinants for the formation of esters. The future applications of this information could drastically improve the current regime of selecting malt and adjunct or their formula with desired amino acids in wort.