摘要

Self-assembled monolayers of hexadecyl palmitate (HP) and 3,3'-thiodipropionic acid di-n-octadecyl ester (TADE) physisorbed on highly oriented pyrolytic graphite (HOPG) are investigated using scanning tunneling microscope (STM) and computer simulation. Both molecules form alkane-like linear shapes to maximize the interactions with substrate when they adsorb on HOPG surface. The HP molecules self-assemble into lamellae with the chain-trough angle of 48 degrees, which is the result of a shifting 3/2 units from the adjacent molecule in a lamella. Based on the simulation insights combined with STM images, we confirm that a perpendicular orientation appears in which the HP molecular backbone is rotated 90 degrees with respect to the substrate such that the carbonyl points away from the HOPG surface. TADE molecules form three kinds of configurations with chain-trough angles of 90 degrees, 72 degrees and 60 degrees by shifting 0, 1/2 and 1 units from their adjacent molecules, respectively. The bright stripes in STM images reveal the electron density distribution of the part between two ester groups. The energy differences of three TADE adsorption configurations by molecular mechanics (MM) simulation are used to explain the structural coexistence phenomenon. It is also shown that lattice match between alkyl chain of molecules and HOPG substrate could change molecular conformation upon self-assembly.