摘要

The constructive disposition of metallic and plastic layers confers flexible pipes with high and low axial stiffness respectively when tensile and compressive loads are applied. Under certain conditions typically found during deepwater installation or operation, flexible pipes may be subjected to high axial compression, sometimes accompanied by bending. If not properly designed, the structure may not be able to withstand this loading and fails. From practical experience observed offshore and in laboratory tests two principal mechanisms, which will be discussed in this paper, have been identified regarding the configuration of the armor wires. When the pipe fails by compression the armor wires may exhibit localized lateral or radial deflections, consequently permanent damage is observed in the armor wires with a sudden reduction of the structure's axial stiffness. The pressure armor may also unlock, thus causing potential fluid leakage.
In this work a finite element model is developed to estimate the critical instability load and failure modes. An axi-symmetric model is constructed employing a complex combination of beam and spring elements. For each armor layer only one wire needs to be modeled, hence the computational cost is minimized without compromising the phenomenon characterization. A parametric case study is performed for a typical flexible pipe structure, where the friction coefficient between the wire armors and the external pressure are varied, and the critical instability loads and failure modes are obtained and results are discussed.

  • 出版日期2011-7