摘要

The corrosion behaviors of pure Mg, AZ91D and Mg-Nd-Zn-Zr (JDBM) alloys in simulated body fluid (SBF) were studied by the optical microscopy, scanning electron microscopy (SEM), hydrogen evolution test and electrochemical technique. The results show that the average corrosion rate of JDBM or pure Mg is much lower than that of AZ91D, and the surfaces of JDBM and pure Mg samples after immersion test are smooth, while the surface of AZ91D sample show many conjoint deep pits. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests also show that JDBM and pure Mg exhibit better corrosion resistance than AZ91D, while the corrosion behavior of JDBM is similar to that of pure Mg. The JDBM alloy has excellent mechanical properties to meet the requirements of implant biomaterials. And the JDBM alloy is a kind of promising magnesium alloy which is suitable to be applied as degradable biomaterials.

全文