摘要

In-plane surface displacements, when measured with 2D Digital Image Correlation (2D-DIC), are very sensitive to out-of-plane displacement components. Any out-of-plane motion of the surface can pollute the measured field by introducing artificial displacements. These displacements are difficult to separate from the underlying response of the surface and thereby limit the application of 2D-DIC in inverse problems where the test specimen has significant motion in the out-of-plane direction. In the context of inverse problems, we propose to partially relax this condition of no out-of-plane motion in 2D-DIC. With this approach, only the out-of-plane rigid-body motion of the specimen surface, which is initially in-plane, needs to be avoided while the requirement of surface deformations to be primarily in-plane is essentially waived. Compensation, based on the pinhole camera model, for out-of-plane displacements of the surface in response to applied load is included within the error function of the minimization problem. The improvements in material parameter estimation, obtained by using the proposed compensation strategy, are demonstrated by an example. The proposed technique makes it possible to utilize 2D-DIC with a simple conventional lens for an increased number of inverse problems; and in the process avoiding the computational and experimental difficulties associated with 3D measurement methods as well as the high cost and magnification limitations of a telecentric lens.