摘要

Newly emerging or re-emerging diseases are a constant and significant threat to agricultural production, so prompt and accurate identification of the causative agents is required for rapid and appropriate disease management. Classical methods of pathogen detection can be successfully supplemented by next-generation sequencing (NGS), whereby sequence analysis can help in the discovery of new or emerging diseases. In 2007, hop growers in Slovenia reported the appearance of severely stunted hop plants, a phenomenon that spread rapidly within hop gardens and among farms. Classical diagnostic methods were unable to detect a new pathogen; therefore, single step high-throughput parallel sequencing of total RNA and small RNAs from plants with and without symptoms was employed to identify a novel pathogen. The sequences were assembled de novo and also mapped to reference genomes, resulting in identification of a novel sequence of Citrus bark cracking viroid (CBCVd) in the stunted hop plants. Furthermore, the presence of this novel pathogen on hop was confirmed by RT-PCR analysis of 59 plants with symptoms from 15 hop gardens, representing the main outbreak locations identified by systematic disease monitoring, and small RNA Illumina sequencing of the bulked RNA sample. The high infectivity of the newly identified CBCVd was also confirmed by biolistic inoculation of two hop cultivars, which developed aggressive symptoms in controlled conditions. This study shows the feasibility of deep sequencing for the identification of causative agents of new diseases in hop and other plants.

  • 出版日期2015-8