摘要

Fyn-tyrosine-kinase-deficient mice exhibit increased fearfulness and display enhanced excitability in the amygdala. To gain insight into the molecular changes associated with the increased excitability of the amygdala, we used a newly developed cDNA array system comprising mouse KIAA cDNA clones to identify novel genes differentially expressed in the amygdala. of fyn(-/-) and fyn(+/-) mice following administration of N-methyl-D-aspartate (NMDA). Laser capture microdissection in combination with PCR-based cDNA amplification allowed us to analyze gene expression in each amygdalar subdivision. The statistical significance of the differential expressions was tested by one-way analysis of variance (ANOVA) by the false discovery rate controlling approach. Among the 805 mKIAA cDNA clones tested, only the expression level of mKIAA1577 (Zinc finger SWIM domain containing protein 6; gene name, Zswim6) showed statistically significant change in regard to the genotype and amygdalar subdivision. Namely, only the lowered expression of mKIAA1577 in the central nucleus of fyn(-/-) mice 1 h after NMDA administration (2.1-fold lower relative to fyn(+/-) mice) was statistically significant. In situ hybridization analysis confirmed the downregulation of the mRNA in the central nucleus of the fyn(-/-) mice 1 h after NMDA administration (3.2-fold lower relative to fyn(+/-) mice). The NMDA-induced change in gene expression was partially blocked by the NMDA antagonist D-AP-5. These results suggest that Fyn deficiency was responsible for the NMIDA-induced downregulation of a specific gene in the amygdalar central nucleus.

  • 出版日期2006-2-16