The effect of lysozyme amyloid fibrils on cytochrome c-lipid interactions

作者:Gorbenko Galyna*; Trusova Valeriya; Sood Rohit; Molotkovsky Julian; Kinnunen Paavo
来源:Chemistry and Physics of Lipids, 2012, 165(7): 769-776.
DOI:10.1016/j.chemphyslip.2012.10.001

摘要

Protein polymerization into ordered fibrillar structures (amyloid fibrils) is currently associated with a range of pathological conditions. Recent studies clearly indicate that amyloid cytotoxicity is provoked by a continuum of cross-beta-sheet aggregates including mature fibrils. In view of the possible diversity of cytotoxicity mechanisms, the present study addressed the question of whether protein conversion into amyloid fibrils can modify its competitive membrane adsorption behavior. Using a combination of resonance energy transfer, dynamic light scattering and fluorescence quenching techniques, the competitive binding of either monomeric or polymerized lysozyme, and cytochrome c to the model lipid membranes composed of phosphatidylcholine mixtures with varying proportions of phosphatidylglycerol, phosphatidylserine or cardiolipin has been studied. The ability of fibrillar lysozyme to induce dissociation of cytochrome c from the membrane binding sites proved to be markedly stronger than that of its monomeric counterpart, with desorption process displaying cooperativity features upon increasing the charge of lipid bilayer. The decreased efficiency of tryptophan fluorescence quenching by acrylamide and short-wavelength shift of emission maximum observed upon membrane binding of lysozyme fibrils were rationalized in terms of fluorophore transfer into interfacial bilayer region. It is hypothesized that electrostatic interactions play predominant role in determining the lipid-associating and competitive abilities of fibrillar lysozyme.

  • 出版日期2012-10