摘要

A hydride control rod is being developed to improve the economy of fast reactor plants because it has a longer lifetime than the currently used B4C control rod. A hydride burnable poison rod is also under development to reduce the number of control rods by decreasing core excess reactivity. Hydrogen in the hydride control rod causes neutron spectrum interference between the fuel and control rod regions. Thus, the study on core design was performed with the continuous-energy Monte Carlo code MVP using the nuclear data library JENDL-3.3 to deal with this phenomenon precisely. To evaluate the applicability of MVP to hydride absorber rod design, two benchmark calculations were carried out. One of them is a hydrogen-contained metal fuel fast core constructed in Fast Critical Assembly (FCA) and the other is the Nuclear Safety Research Reactor (NSRR) core where zirconium-hydride fuel (U-ZrH1.6) rods are loaded. These benchmark calculations and the design study on a fast reactor core with hafnium-hydride control rods have revealed that MVP is a reliable tool for hydride absorber rod design.

  • 出版日期2010-4