摘要

Recent molecular-dynamics (MD) simulation of methane flow through nanoscale kaolinite channels shows that the gas molecules accumulate near the kaolinite wall, which will reduce the flowpath of the gas through tight porous media. Considering this gas-accumulation effect, and on the basis of the corrected second-order slip boundary condition (BC) proposed by Zhang et al. (2010), a permeability-correlation model is proposed for nanoscale flow in highly compacted shale reservoirs. Full-derivation detail of this model is presented along with a comparison with several existing correlations. Results show that, with the increase of the Knudsen number (Kn), the molecular-accumulation effect has an obvious negative effect on the shale permeability, which should not be neglected in further investigation. The parametric investigation of the model proposed shows that the permeability is mostly decided by the pore-wall structure of shale matrix and only slightly influenced by the gas property.