摘要

The key issue in on-orbit manipulation is to transport large flexible modules to pre-assembly position accurately. However, the cooperative manipulation by a team of space robots can induce large vibration in the robot-beam system. This paper presents a two-time scale control scheme for vibration minimization in trajectory tracking of the flexible module. The control scheme is composed of a slow controller ensuring precise tracking of the beam's rigid motion and a fast controller to minimize the systemic vibration. Our approach to the slow controller design is based on non-singular terminal sliding mode control, with which fast and finite-time convergence of tracking errors against disturbances is obtained. The fast controller guarantees minimum vibration induced during the manipulation by applying optimal control technique. Numerical results by comparison show that the two-time scale control scheme for cooperative manipulation demonstrates higher precision and finite-time convergence in tracking the rigid motion with robustness and minimizing the vibration simultaneously.