Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method

作者:Peng, Jianhui; Peng, Zhiwei*; Zhu, Zhongping; Augustine, Robin; Mahmoud, Morsi M.; Tang, Huimin; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao
来源:Ceramics International, 2018, 44(17): 21015-21026.
DOI:10.1016/j.ceramint.2018.08.137

摘要

The Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite for electromagnetic wave absorption was successfully synthesized from metal chlorides solutions and graphite powder by a simple and rapid microwave-assisted polyol method via anchoring the Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on the layered graphene sheets. The Fe3+, Co2+, Ni2+ and Mn2+ ions in the solutions were attracted by graphene oxide obtained from graphite and converted to the precursors Fe(OH)(3), Co(OH)(2), Ni(OH)(2), and Mn(OH)(2) under slightly alkaline conditions. After the transformations of the precursors to Co-Ni-Mn ferrites and conversion of graphene oxide to graphene under microwave irradiation at 170 degrees C in just 25 min, the Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite was prepared. The composition and structure of the nanocomposite were characterized by X-ray diffraction (XRD), inductive coupled plasma emission spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), transmission electron microscopy (TEM), etc. It was found that with the filling ratio of only 20 wt% and the thickness of 2.3 mm, the nanocomposite showed an ultra-wide effective absorption bandwidth (less than -10 dB) of 8.48 GHz (from 9.52 to 18.00 GHz) with the minimum reflection loss of - 24.29 dB. Compared to pure graphene sheets, Co0.33Ni0.33Mn0.33Fe2O4 nano particles and the counterparts reported in literature, the nanocomposite exhibited much better electromagnetic wave absorption, mainly attributed to strong wave attenuation, as a result of synergistic effects of dielectric loss, conductive loss and magnetic loss, and to good impedance matching. In view of its thin thickness, light weight and outstanding electromagnetic wave absorption property, the nanocomposite could be used as a very promising electromagnetic wave absorber.