摘要

In experimentally induced chronic gastritis, a compensatory mucosal cell proliferation occurs with enhanced glucose oxidative metabolism linked to lipoperoxidative events. Therefore, this study was aimed at assessing the participation of cell NAD/NADH redox state and mitochondrial functions during gastric mucosa proliferation and the effects of in vivo a-tocopherol (vitamin E) administration. Glucose oxidation and oxygen consumption were tested in gastric mucosa samples obtained from rats with gastritis and from those also treated with a-tocopherol. Gastric mucosal mitochondria were isolated and structural and functional parameters were determined. Succinate oxidation, ADP phosphorylation, mitochondrial enzyme activities, and membrane lipid composition were measured. In addition, parameters indicative of cellular NAD/NADH redox state, proliferation, apoptosis, and nitric oxide (NO) metabolism were also determined. After ethanol withdrawal, the damaged gastric mucosa increased glucose and oxygen consumption, events associated with a more reduced cytoplasmic NAD/NADH ratio. Enhanced mitochondrial oxidative phosphorylation and increased mitochondrial enzyme activities occurred early, accompanied by recovery of lost mitochondrial protein and lipid composition in the gastric mucosa, events associated with increased NO production. When mitochondrial function and structural events were normalized, apoptosis was initiated as assessed by the mitochondria] Bax/Bcl2 ratio. Treatment with a-tocopherol inhibited cell proliferation and blocked enhanced glucose utilization, mitochondrial substrate oxidation, and changes in redox state, delaying the onset of these adaptive metabolic changes, whereas it inhibited cell proliferation. In conclusion, a-tocopherol could abolish damage-induced %26quot;stress%26quot; signaling by desynchronizing mitochondrial adaptive responses, including mitochondria biogenesis, and consequently NAD/NADH redox, which seems to regulate gastric mucosal cell proliferation.

  • 出版日期2013-12