摘要

Arsenic trioxide (As2O3) exhibits a remarkable effect on leukemia treatment; however, its effect on solid tumors remains poorly explored. The present study demonstrated the inhibitory effect of As2O3 on lung cancer and explored its possible mechanism. It was observed that As2O3 significantly inhibited the growth of lung cancer xenografts and tumor angiogenesis in vivo. The inhibitory effect of As2O3 on cell proliferation in vitro was more remarkable in vascular endothelial cells than in lung cancer cells. It was also observed that As2O3 inhibited the migration of vascular endothelial cells and disrupted vascular tube formation on Matrigel assays. In addition, a series of key signaling factors involved in multiple stages of angiogenesis, including matrix metalloproteinase (MMP)-2, MMP-9, platelet-derived growth factor (PDGF)-BB/PDGF receptor-beta, vascular endothelial growth factor (VEGF)-A/VEGF receptor-2, basic fibroblast growth factor (FGF)/FGF receptor-1 and delta like canonical Notch ligand 4/Notch-1, were regulated by As2O3. These findings suggested that anti-angiogenesis may be an underlying mechanism of As2O3 anticancer activity in lung cancer.