Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing

作者:Shi, Rui; Niu, Yuzhao; Gong, Min; Ye, Jingling; Tian, Wei*; Zhang, Liqun*
来源:Materials Science & Engineering C-Materials for Biological Applications, 2018, 87: 128-138.
DOI:10.1016/j.msec.2018.02.025

摘要

Bacterial infection is a major problem world-wide, especially in wound treatment where it can severely prolong the healing process. In this study, a double drug co-delivery elastic antibacterial nanocomposite was developed by combining ciprofloxacin (CPX) and polymyxin B sulfate-loaded halloysite clay nanotubes (HNTs-B) into a gelatin elastomer. CPX nanoparticles which act against both gram positive and gram-negative bacterium were dispersed directly in the matrix, and polymyxin B sulfate was loaded in HNTs and then distributed into the matrix. The effect of CPX and HNTs-B content on the physical properties, cytotoxicity, fibroblast adhesion and proliferation, in vitro drug release behavior and anti-bacterial properties were systematically investigated. The ciprofloxacin crystals and HNT-B were distributed in the matrix uniformly. The HNTs in the drug loading system not only enhanced the matrix' tensile strength but also slowed down the release rate of the high dissoluble polymyxin B sulfate. When the amount of HNT in the matrix increased, the thermal stability and tensile strength also increased but the polymyxin B sulfate release rate decreased because the HNTs prevented the drug release inside. All the nanocomposites exhibited antimicrobial activity against both gram-negative and gram-positive bacteria with the dual combination of drugs released from the nanocomposites. Furthermore, this kind of gelatin-based nanocomposites possesses higher water-absorbing quality, low cytotoxicity, adaptable biodegradability and good elasticity which can satisfy the requirements for an ideal biomaterial for use in wound healing applications.