摘要

In this work, a new multi-dimensional Finite Volume (FV) solver of partial differential equations (PDEs) for compressible and reacting flows through porous media has been developed. The solver makes use of a pseudo-staggered arrangement, in order to preserve sharp value changes in pressure and velocity fields across Diesel Particulate Filter (DPF) porous walls; the resulting form of the pressure correction equation is able to achieve a fast convergence at very low permeability of the medium, also when it is associated with strong grid non-orthogonality.
A description of the theory adopted for the implementation of a highly efficient C++ object oriented dynamic library is presented first. The library has been applied to the new compressible solver for the multi-dimensional simulation of the hydrodynamics of full-scale wall-flow Diesel Particulate Filters. Code validation has been performed against experimental data available from the published literature.

  • 出版日期2010-10