摘要

Iron phthalocyanine based cathodes were prepared either by dispersion of FePc on carbon or by electropolymerization of aniline in presence of FeTsPc. The macrocycles based cathodes were compared to a classical commercial Pt/C cathode in a standard three-electrode electrochemical cell and under DMFC conditions at room temperature. It was shown that the molecular dispersion of FeTsPc into a PAni film greatly enhances the activity of the macrocycle catalyst towards oxygen reduction reaction (ORR). But, in the same time, the stability under DMFC conditions is drastically decreased compared to the stability obtained with a FePc/C electrode. It was suggested that this instability of the catalytic film was rather due to the release of the FeTsPc from the polymer than to the destruction of the macrocycle active centre. Even if iron phthalocyanine catalysts display total tolerance to methanol when the anode is fed with a 5 M methanol solution, the comparison between a PAni-FeTsPc/C cathode and a Pt/C cathode in DMFC working conditions is in favor of the Pt/C cathode, in term of maximum achieved power density. However, the ratio (platinum atoms per cm(2)/number of FeTsPc molecules per cm(2)) is close to 100, which allows to be optimistic for further enhancement of activity of polymer-FeTsPc electrodes. It was suggested that researches to develop new electron conductive polymers stable under oxidative environment and with a high doping capacity could be a direction to use platinum alternative cathode catalysts in DMFC technology.

  • 出版日期2005-10-20
  • 单位中国地震局