摘要

Colony enlargement in Phaeocystis globosa has been considered as an induced defense strategy that reduces its susceptibility to grazers, but allocation costs inflicted by this plastic morphological defense are poorly understood. We conducted experiments in which P. globosa cultures were exposed to chemical cues from copepods, ciliates and heterotrophic dinoflagellates, respectively, under nutrient sufficient and deficient conditions to evaluate allocation costs associated with induced defense. Phaeocystis globosa responded to chemical cues from grazers by increasing colony diameter irrespective of nutrient conditions. We did not find trade-offs between induced defense and growth rate under nutrient sufficient conditions. Instead, induced defensive P. globosa had higher growth rates than non-induced P. globosa. When nutrient became limited, P. globosa exposed to grazing cues from copepods and dinoflagellates had significantly decreased growth rates when compared with non-induced P. globosa. We suggested that the decreased growth revealed allocation costs associated with induced defense that may influence on the trophic interactions between Phaeocystis and consumers.