摘要

The present study deals with the surface gravity wave interaction with submerged horizontal flexible porous plate under the assumption of small amplitude water wave theory and structural response. The flexible porous plate is modeled using the thin plate theory and wave past porous structure is based on the generalized porous wavemaker theory. The wave characteristics due to the interaction of gravity waves with submerged flexible porous structure are studied by analyzing the complex dispersion relation using contour plots. Three different problems such as (i) wave scattering by a submerged flexible porous plate, (ii) wave trapping by submerged flexible porous plate placed at a finite distance from a rigid wall and (iii) wave reflection by a rigid wall in the presence of a submerged flexible porous plate are analyzed. The role of flexible porous plate in attenuating wave height and creating a tranquility zone is studied by analyzing the reflection, transmission and dissipation coefficients for various wave and structural parameters such as angle of incidence, depth of submergence, plate length, compression force and structural flexibility. In the case of wave trapping, the optimum distance between the porous plate and rigid wall for wave reflection is analyzed in different cases. In addition, effects of various physical parameters on free surface elevation, plate deflection, wave load on the plate and rigid wall are studied. The present approach can be extended to deal with acoustic wave interaction with flexible porous plates.

  • 出版日期2015-4