摘要

Two-dimensional angle-independent blood velocity estimates typically combine the Doppler frequencies independently measured by two ultrasound beams with known interbeam angle. A different dual-beam approach was recently introduced in which one (reference) beam is used to identify the flow direction, and the second (measuring) beam directly estimates the true flow velocity at known beam-flow angle. In this paper, we present a procedure to automatically steer the two beams along optimal orientations so that the velocity magnitude can be measured. The operator only takes care of locating the Doppler sample volume in the region of interest and, through the extraction of appropriate parameters from the Doppler spectrum, the reference beam is automatically steered toward right orientation to the flow. The velocity magnitude is thus estimated by the measuring beam, which is automatically oriented with respect to the (known) flow direction at a suitable Doppler angle. The implementation of the new angle tracking method in the ULtrasound Advanced Open Platform (ULA-OP), connected to a linear array transducer, is reported. A series of experiments shows that the proposed method rapidly locks the flow direction and measures the velocity magnitude with low variability for a large range of initial probe orientations. In vitro tests conducted in both steady and pulsatile flow conditions produced coefficients of variability (CV) below 2.3% and 8.3%, respectively. The peak systolic velocities have also been measured in the common carotid arteries of 13 volunteers, with mean CV of 7%. (E-mail: piero.tortoli@unifi.it).

  • 出版日期2010-3