摘要

Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Ca-v channels affecting movement are also primarily neural, suggesting that muscle Na-v channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia.

  • 出版日期2014-8-4