摘要

In neural networks, there exist both synaptic delays among different neurons and autaptic self-feedback delays in a neuron itself. In this paper, we study synchronization transitions induced by synaptic and autaptic delays in scale-free neuron networks, mainly exploring how these two time delays affect synchronization transitions induced by each other. It is found that the synchronization transitions induced by synaptic (autaptic) delay are intermittently enhanced when autaptic (synaptic) delay is varied. There are optimal autaptic strength and synaptic coupling strength by which the synchronization transitions induced by autaptic and synaptic delays become strongest. The underlying mechanisms are briefly discussed in terms of the relationships of autaptic delay, synaptic delay, and inter-burst interval. These results show that synaptic and autaptic delays could contribute to each other and enhance synchronization transitions in the neuronal networks. This implies that autaptic and synaptic delays could play a vital role for the information transmission in neural systems.