A Five-Species Transcriptome Array for Oral Mixed-Biofilm Studies

作者:Redanz Sylvio*; Standar Kerstin; Podbielski Andreas; Kreikemeyer Bernd
来源:PLos One, 2011, 6(12): e27827.
DOI:10.1371/journal.pone.0027827

摘要

Background: Oral polymicrobial interactions and biofilm formation are associated with initiation and progression of caries, gingivitis, and periodontitis. Transcriptome studies of such interactions, allowing a first mechanistic insight, are hampered by current single-species array designs.
Methodology/Principal Findings: In this study we used 385 K NimbleGene (TM) technology for design and evaluation of an array covering the full genomes of 5 important physiological-, cariogenic-, and periodontitis-associated microorganisms (Streptococcus sanguinis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis). Array hybridization was done with cDNA from cultures grown for 24 h anaerobically. Single species experiments identified cross-species hybridizing array probes. These probes could be neglected in a mixed-species experimental setting without the need to exclude the whole genes from the analysis. Between 69% and almost 99% of the genomes were actively transcribed under the mono-species planktonic, monolayer, and biofilm conditions. The influence of Streptococcus mitis (not represented on the array) on S. mutans gene transcription was determined as a test for a dualspecies mixed biofilm setup. Phenotypically, under the influence of S. mitis an increase in S. mutans biofilm mass and a decrease in media pH-value were noticed, thereby confirming previously published data. Employing a stringent cut-off (2fold, p, 0.05), 19 S. mutans transcripts were identified with increased abundance, and 11 with decreased abundance compared to a S. mutans mono-species biofilm. Several of these genes have previously been found differentially regulated under general and acid stress, thereby confirming the value of this array.
Conclusions/Significance: This new array allows transcriptome studies on multi-species oral biofilm interactions. It may become an important asset in future oral biofilm and inhibitor/therapy studies.

全文