摘要

Plant cells are surrounded by a carbohydrate-rich extracellular matrix known as the cell wall. Primary cell walls are laid down around dividing and elongating cells and consist largely of the polysaccharides cellulose, hemicelluloses, and pectin along with approximately 10% protein. Specific cells such as xylem vessels and fibers lay down a secondary wall rich in cellulose, hemicellulose, and lignin, with lesser amounts of pectin. Most of the models depict the plant cell wall as a matrix of separate polysaccharides. However, the recent identification of a proteoglycan that contains covalently attached pectin and xylan indicates that at least some of these wall glycans exist as domains within a single glycopolymer and that current models of the wall need to be revised. Furthermore, several cell wall biosynthesis mutants, including the secondary cell wall mutant irregular xylem (irx) 8, are affected in multiple cell wall polymers making it challenging to define the biochemical function of the mutated gene. The goal of this review is to provide a background for studying genes which encode secondary cell wall biosynthetic proteins whose mutation affects multiple wall polymers including xylan and lignin. We first review the phenotypes of the irx mutants and then summarize the current understanding of the structure and synthesis of xylan and lignin along with a review of transcription factors known to affect secondary wall synthesis. This review is intended to serve as a resource for those studying genes that encode proteins involved in the synthesis of plant secondary wall lignin and xylan.

  • 出版日期2014-6