Digital Microfluidics for Immunoprecipitation

作者:Seale Brendon; Lam Charis; Rackus Darius G; Chamberlain M Dean; Liu Chang; Wheeler Aaron R
来源:Analytical Chemistry, 2016, 88(20): 10223-10230.
DOI:10.1021/acs.analchem.6b02915

摘要

Immunoprecipitation (IP) is a common method for isolating a targeted protein from a complex sample such as blood, serum, or cell lysate. In particular, IP is often used as the primary means of target purification for the analysis by mass spectrometry of novel biologically derived pharmaceuticals, with particular utility for the identification of molecules bound to a protein target. Unfortunately, IP is a labor-intensive technique, is difficult to perform in parallel, and has limited options for automation. Furthermore, the technique is typically limited to large sample volumes, making the application of IP cleanup to precious samples nearly impossible. In recognition of these challenges, we introduce a method for performing microscale IP using magnetic particles and digital microfluidics (DMF-IP). The new method allows for 80% recovery of model proteins from approximately microliter volumes of serum in a sample-to-answer run time of approximately 25 min. Uniquely, analytes are eluted from these small samples in a format compatible with direct analysis by mass spectrometry. To extend the technique to be useful for large samples, we also developed a macro-to-microscale interface called preconcentration using liquid intake by paper (P-CLIP). This technique allows for efficient analysis of samples >100x larger than are typically processed on microfluidic devices. As described herein, DMF-IP and P-CLIP-DMF-IP are rapid, automated, and multiplexed methods that have the potential to reduce the time and effort required for IP sample preparations with applications in the fields of pharmacy, biomarker discovery, and protein biology.

  • 出版日期2016-10-18