摘要

In this paper, neural-based fuzzy logic sliding mode control with moving sliding surface has been designed for supervision of an overhead crane. A mathematical model has been established of the crane, and equations of motion have been obtained. First, the suitable sliding surface coefficient has been determined for the fixed sliding surface in the design of sliding mode control. The sliding surface has been moved by using neural-based fuzzy logic algorithm to eliminate disadvantage of the regular sliding mode control. By application of this control algorithm, the control performance incredibly increased. In the application, during the carriage of the load to a target which was 1 m away by a crane with 3 kg of load and 100 cm of rope length, the parameters of effected controllers were updated and their training was realized. In order to display the insensitiveness of the controller to parametric uncertainty, the value of the load was taken as 8 kg and the length of the rope was taken as 3 m and controls for a different target were realized. MATLAB program was used for numerical solutions, and results were examined graphically. Obtained results displayed the success of the algorithm of neural-based fuzzy logic sliding mode control.

  • 出版日期2014-5