摘要

Serum total bile acids (TBA) level is used as a sensitive and reliable index for hepatobiliary diseases in clinics. Herein, a novel electrochemical biosensor was fabricated using enzymatic reaction coupling with the double oxidation circular amplification strategy for the detection of human serum TBA. With the catalysis of 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD), 3 alpha-bile acids reacted specifically with nicotinamide adenine dinucleotide (NAD(+)). And then, the reduced nicotinamide adenine dinucleotide (NADH) was produced. After that, the NADH reacted with the electron mediator of tris(2,2'-bipyridine) ruthenium(III) (Ru(bpy)(3)(3+)), which was then transformed to Ru(bpy)(3)(2+). Ultimately, Ru(bpy)(3)(2+) was further oxidized to Ru(bpy)(3)(3+) under a certain voltage, which was detected by the chronoamperometry assay. The detection was performed using a disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation. The proposed biosensor showed high sensitivity and accuracy with the linear range from 5.0 to 150.0 pmol/L in 10(6)-fold dilution serum. The established method had a good correlation with the enzymatic cycling method (r = 0.9372, P < 0.001, n = 72) commonly used in clinic. The electrochemical biosensor is simple, ultrasensitive and without sample pretreatment, showing great potential for point-of-care testing (POCT) of serum TBA in clinical samples. In addition, the biosensor is cost-effective with a small volume of samples, especially suitable for those who have difficulties in blood collection, such as infants, children and some small animals.