摘要

Acinetobacter baumannii is one of the major cause of nosocomial infections around the globe. The emergence of hyper-virulent strains of the pathogen greatly narrows down therapeutic options for patients infected with this red alert superbug. Development of a peptide-based vaccine can offers an alternative, attractive, and cost-effective remedy for multidrug-resistant A. baumannii associated complications. Herein, we introduced a novel virulome based Reverse Vaccinology for screening peptide based vaccine candidates against A. baumannii and its validation using a negative control. The pipeline screened "FYLNDQPVS" of polysaccharide export outer membrane protein (EpsA) and "LQNNTRRMK" of chaperone-usher pathway protein B (CsuB) as broad-spectrum peptides for induction of targeted immune responses. The 9-mer epitope of both proteins was rendered virulent, antigenic, non-allergen, and highly conserved among thirty-four completely annotated strains. Interactome examination unravels peptides protein direct and indirect interactions with biological significant pathways, essential for A. baumannii pathogenesis and survival. Protein-peptide docking aids in addition by unveiling deep binding of the epitopes in the active site of the most prevalent binding allele in the human population the DRB1*0101. Both the proteins till to date are not characterized for immunoprotective efficacy and desirable to be deciphered experimentally. The designed series of in silico filters rejected few recently reported peptide and non-peptide vaccine targets and has delivered outcomes, which we believe will enrich the existing knowledge of vaccinology against this life-threatening human pathogen.

  • 出版日期2018-8
  • 单位上海生物信息技术研究中心