摘要

This paper provides an undulatory locomotion model inspired by C. elegans, whose nervous system and muscular structure are well studied. C. elegans is divided into 11 muscle segments according to its anatomical structure, and represented as a multi-joint rigid link model in this work. In each muscle segment, there are four pieces of muscles located in four quadrants. The muscles change their lengths according to the outputs of nervous system. In this work, the dynamic neural networks (DNN) are adopted to represent the nervous system. The DNN are divided into the head DNN and the body DNN. The head DNN produces the sinusoid waves to generate the forward and backward undulatory movements. The body DNN with 11 segments is responsible for passing the sinusoid wave and creating the phase lag. The 3D locomotion of this system are implemented by using the DNN to control the muscle lengths, and then using the muscle lengths to control the angles between two consecutive links on both horizontal and vertical planes. The test results show good performances of this model in both forward and backward locomotion in 3D, which could serve as a prototype of the micro-robot for clinical use.