摘要

Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag+ (10 mu g L-1) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two-dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag+. Fifteen of these proteins were subsequently identified by MALDI-TOF-TOF and database search. Ag NPs affected similar cellular pathways as Ag+, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in cytoskeleton and cell structure (paramyosin), while exposure to Ag+ had a strong influence in one protein related to stress response (putative c1q domain containing protein) and two proteins involved in cytoskeleton and cell structure (actin and alpha-tubulin). Protein identification showed that Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades (including mitochondria and nucleus) that can lead to cell death. This toxicity represents the cumulative effect of Ag+ released from the particles and other properties as particle size and surface reactivity. This study helped to unravel the molecular mechanisms that can be associated with Ag NPs toxicity; nevertheless, some additional studies are required to investigate the exact interaction between these NPs and cellular components.

  • 出版日期2013-7-15