摘要

Doxorubicin is an anticancer agent, which binds reversibly to topoisomerase I and II, intercalates to DNA base pairs, and generates free radicals. Doxorubicin has a high tissue:plasma partition coefficient and high intracellular binding to the nucleus and other subcellular compartments. The metabolite doxorubicinol has an extensive tissue distribution. This porcine study investigated whether the traditional implementation of tissue binding, described by the tissue:plasma partition coefficient (K-p,K-t),could be used to appropriately analyze and/or simulate tissue doxorubicin and doxorubicinol concentrations in healthy pigs, when applying a physiologically based pharmacokinetic (PBPK) model approach, or whether intracellular binding is required in the semi-PBPK model. Two semi-PBPK models were developed and evaluated using doxorubicin and doxorubicinol concentrations in healthy pig blood, bile, and urine and kidney and liver tissues. In the generic semi-PBPK model, tissue binding was described using the conventional K-p,K-t approach. In the binding-specific semi-PBPK model, tissue binding was described using intracellular binding sites. The best semi-PBPK model was validated against a second data set of healthy pig blood and bile concentrations. Both models could be used for analysis and simulations of biliary and urinary excretion of doxorubicin and doxorubicinol and plasma doxorubicinol concentrations in pigs, but the binding-specific model was better at describing plasma doxorubicin concentrations. Porcine tissue concentrations were 400- to 1250-fold better captured by the binding-specific model. This model adequately predicted plasma doxorubicin concentration time and biliary doxorubicin excretion profiles against the validation data set. The semi-PBPK models applied were similarly effective for analysis of plasma concentrations and biliary and urinary excretion of doxorubicin and doxorubicinol in healthy pigs. Inclusion of intracellular binding in the doxorubicin semi-PBPK models was important to accurately describe tissue concentrations during in vivo conditions.

  • 出版日期2017-3