Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite

作者:Qiu Jingjing; Hajibabaei Hamed; Nellist Michael R; Laskowski Forrest A L; Hamann Thomas W; Boettcher Shannon W
来源:ACS Central Science, 2017, 3(9): 1015-1025.
DOI:10.1021/acscentsci.7b00310

摘要

Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, alpha-Fe2O3, in contact with one of the fastest known water oxidation catalysts, Ni0.8Fe0.2Ox, by directly measuring/controlling the current and/or voltage at the Ni0.8Fe0.2Ox catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in alpha-Fe2O3 directly transfer to the catalyst film over a wide range of conditions and that the Ni0.8Fe0.2Ox is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the alpha-Fe2O3. The Ni0.8Fe0.2Ox therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the alpha-Fe2O3|Ni(0.8)Fe(0.2)Ox interface is significantly decreased by the oxidation of Ni2+ to Ni3+ and the associated increase in the Ni(0.8)Fe(0.2)Ox electrical conductivity. In sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.

  • 出版日期2017-9-27