Nanolevel Control of Gas Sensing Characteristics via p-n Heterojunction between Rh2O3 Clusters and WO3 Crystallites

作者:Staerz Anna; Kim Tae Hyung; Lee Jong Heun; Weimar Udo; Barsan Nicolae*
来源:Journal of Physical Chemistry C, 2017, 121(44): 24701-24706.
DOI:10.1021/acs.jpcc.7b09316

摘要

Today semiconducting metal oxide (SMOX) based gas sensors are used in a wide array of applications. Dopants, e.g., rhodium, are often used to change the sensor response of SMOXs. The adjustment of sensing characteristics with dopants is usually done empirically, and there is a knowledge gap surrounding how the presence of dopants alters the chemistry of sensing. Here using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dc resistance measurements, and operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, it was understood how surface loading with Rh2O3 changes sensing with WO3. As a result of uniform surface loading, reactions between the Rh2O3 clusters and the analyte gas dominate the reception. Changes in the p-n heterojunction between Rh2O3 and WO3 are responsible for the transduction. These results in combination with existing literature indicate that, through controlled surface doping, it is possible to intentionally tune the sensor characteristics of SMOXs.

  • 出版日期2017-11-9