摘要

Coke production process, which involves gas generation, cross-linking, gas foaming as well as solidification phenomena, is extremely complex and is difficult to model them without simplification. In this study, a simple phenomenological model was developed based on a gas foaming simulation model of polymer foaming, which enabled us to simulate the number density of bubbles and their distributed size. The model was extended to account their kinetics of bubble nucleation, growth and coalescence in non-isothermal chemical reactions of gas generation and cross-linking. The bubbles size and morphology obtained from the numerical simulation of two different coals agreed with the pictures of the experiment qualitatively. Five different coals were investigated to understand the relationship between the kinetic and final morphology of coke.

  • 出版日期2014