摘要

The concept of supercritical natural circulation loop (SCNCL) is an important inclusion in Generation-IV nuclear reactors. Use of supercritical fluids promises a simplified design, along with higher thermal efficiency for heat transport systems. Characteristics of such loops are markedly different from its single-phase and two-phase counterparts, while carrying quite a few similarities with both as well. Therefore significant number of research studies is carried out on SCNCL in the present millennium and current work presents a state-of-the-art summary of all associated observations. Most of the reported studies are theoretical in nature, with only a limited number of experimental works being reported. A number of indigenous computation codes were developed, while use of commercial software can also be found. Thermal-hydraulic and heat transfer aspects are discussed in details, showing the gradual growth of knowledge and comprehending the influence of various geometric and operating variables on steady-state profile. Water and carbon dioxide are identified as the only fluids considered for analysis both numerically and experimentally. Both time-domain and frequency-domain approach of stability analysis are discussed meticulously. Available experimental works are described, with exhaustive discussion on the novelty of the concerned facility and major observations. Finally a few topics are ear-marked as the possible guidelines for future research.

  • 出版日期2014-11