摘要

The Bachu (a center dot ' aeyene) uplift is one of the most active tectonic regions nowadays in the Tarim basin, which is also a faulted block uplift that was intensively active during the Cenozoic. This study was based primarily on the geological structure interpretation of seismic profiles, applying the theories and methods of basin dynamics, structural analysis and tectono-stratigraphic analysis, the geometry and kinematics features of the fault systems in the Bachu uplift were analyzed in detail. Our study shows that each fault belt is mainly characterized by compression and overthrusting, most of the faults initiated and activated during the Mid-Late Himalayan period, and that the general structural styles of the Bachu uplift were basement-involved pop-up thrust faulted block uplift, of which the southern margin was covered by the large-scale decollement fault system. The basement-involved structures widely developed in the higher position of the basement uplift, while decollement fault system developed mainly at the position with gypsum mudstone. The evolution process of Bachu uplift included back-bulge slope of the peripheral foreland basin in Mid-Late Caledonian, forebulge in Hercynian-Yanshanian and the latest compressional faulted block uplift in Mid-Late Himalayan. Meanwhile, the study also suggests that the formation, reconstruction and stabilization of the uplift were controlled by the development and evolution of fault systems clearly. In the early forebulge stage, it was mainly presented as flexural deformation without the developing of thrust faults in the Bachu area; to the late stage, under the influence of violent lateral compression deformation, the faulted block uplift formed finally.