摘要

Pulse discharge technology (PDT) is an innovative construction method used to enhance the bearing capacity of piles and the resisting capacity of anchors by underreaming using a high-pressure shockwave induced by an underwater electric discharge. This study numerically analyzes the pullout behavior of a grout anchor underreamed by PDT. A series of finite element analyses were performed to examine the pullout behavior of the anchor based on successive simulations from underreaming to subsequent pullout tests. The electric blasting and shockwave generation by PDT was equivalently modeled using the underwater explosion (UNDEX) model, and the appropriate UNDEX parameters were determined by benchmarking the laboratory PDT tests. Full-scale PDT underreaming and the subsequent pullout tests in dry sand deposits reported in the literature were then simulated on the basis of fluid-structure interaction (FSI) analyses and static uplift analyses. The predicted expansion of the borehole and the pullout behaviors were compared with field test results to validate the numerical model. Moreover, the results from a parametric study conducted to investigate the influence of soil and anchor characteristics on the uplift behavior of the PDT underreamed anchor are discussed.

  • 出版日期2013-1