摘要

A nanocomposite platform built with multi-walled carbon nanotubes (MWCNTs) and nicotinamide adenine dinucleotide (NAD(+)) via a noncovalent interaction between the large it systems in NAD(+) molecules and MWCNTs on a glassy carbon substrate was successfully developed for the sensitive and selective detection of uric acid (UA) in the presence of ascorbic acid (AA), dopamine (DA). NAD(+) has an adenine subunit and a nicotinamide subunit, which enabled interaction with the purine subunit of UA through a strong pi-pi interaction to enhance the specificity of UA. Compared with a bare glassy carbon electrode (GCE) and MWCNTs/GCE, the MWCNTs-NAD(+)/GCE showed a low background current and a remarkable enhancement of the oxidation peak current of UA. Using differential pulse voltammetry (DPV), a high sensitivity for the determination of UA was explored for the MWCNTs-NAD(+) modified electrode. A linear relationship between the DPV peak current of UA and its concentration could be obtained in the range of 0.05 - 10 mu M with the detection limit as low as 10 nM (S/N = 3). This present strategy provides a novel and promising platform for the detection of UA in human urine and serum samples.