摘要

A combination of photothermal-chemotherapy has received widespread attention in drug delivery systems for cancer treatment. However, the combination therapy operated in subcellular organelles, such as mitochondria, has been rarely reported. Herein, we designed a novel near-infrared (NIR) triggered dual-targeted nanoplatform (FA/TPP-DINPs) based on mitochondrial combined photothermal-chemotherapy by co-loading FDA-approved NIR dye indocyanine green (ICG) and anticancer drug doxorubicin (DOX). The resulting nanoparticles showed a monodispersed sphere and excellent colloidal stability. Specially, the simultaneous introduction of targeted ligands folic acid (FA) and triphenylphosphine (TPP) to nanoparticles significantly promoted the cellular internalization and mitochondria co-localization of nanoparticles. Moreover, the encapsulated dye could convert NIR light into heat with high efficiency, which makes the FA/TPP-DINPs an effective platform for mitochondrial combination therapy with chemotherapy drug DOX. Meanwhile, the thermal expansion in response to the change of temperature after sustained 808 nm laser irradiation could cause the disintegration of nanoparticles, which triggered the rapid release of DOX from nanoparticles. As expected, the prepared FA/TPP-DINPs exhibited evidently enhanced cytotoxicity and preeminent combination therapy efficiency on MCF-7 cells. Thus, the NIR triggered dual-targeted nanoplatform provides a new drug delivery strategy for mitochondrial combined photothermal-chemotherapy of cancer.