摘要

As one of the major causes of traffic accidents, tire hydroplaning is a key driver safety concern. A tire model 205/55R16 was employed in this study, and a virtual simulation of a deformed half-tire domain for calculating hydroplaning speed was built by virtue of computational fluid dynamics. Water-flow field characteristics were simulated using gas-liquid two-phase flow. The simulated tire hydroplaning speed is in accord with the measured tire hydroplaning data. Guided by the idea that the drag-reduction effect of the V-riblets based on bionic study of shark skin, effects of V-riblet bionic non-smooth surface parameters on water displacement, and flow resistance were analyzed to improve tire tread pattern draining capacity. The water drag-reduction mechanism was declared by the vortex vector and speed field, and the optimal V-riblet surface for drag reduction was set on the bottom circumferential grooves to analyze hydroplaning speed. The results demonstrate that the V-riblet bionic non-smooth surface can effectively decrease tread hydrodynamic pressure when driving on a water-film and increase tire hydroplaning speed.