摘要

Background: The background of this study was (1) to examine factors influencing cilostazol pharmacokinetics by developing a population model incorporating diurnal variation and other covariate effects and (2) to assess the feasibility of applying the developed model to determine the optimal dosing times. Methods: Data obtained from a cilostazol pharmacokinetic study consisting of 2 clinical trials (a single twice-a-day (BID) dosing trial in winter and a multiple BID dosing trial in summer) conducted in healthy Korean subjects were used for model building. A basic model was built, followed by a diurnal variation model, and then a final model was built incorporating covariates, including a seasonal difference. The optimal morning and evening dosing times were determined from simulations. Results: Diurnal variation in cilostazol pharmacokinetics was explained by the morning absorption rate constant being faster than in the evening, yielding values of 0.278 versus 0.234/h in summer, when 24- and 12-hour circadian rhythms were included in the model. The seasonal variation was explained by a 26.9% and a 31.8% decrease in the absorption rate constant and clearance, respectively, in winter compared with summer. Based on twice-a-day (BID) dosing, dosing times of 9 AM and 5 PM in summer and 10 AM and 7 PM in winter were expected to produce the smallest peak-to-peak fluctuations in cilostazol concentration, possibly minimizing unwanted effects of the drug. Conclusions: This study demonstrated the intraday and interseasonal time-varying nature of cilostazol pharmacokinetics using a population modeling approach and developed a strategy for optimizing dosing times. It is suggested that these methods can be similarly applied to analyses and controls of other drugs that exhibit characteristics of time-varying pharmacokinetics.

  • 出版日期2014-12