Androgens Contribute to Age-Associated Changes in Peripheral T-Cell Homeostasis Acting in a Thymus-Independent Way

作者:Arsenovic Ranin Nevena; Kosec Dusko; Pilipovic Ivan; Bufan Biljana; Stojic Vukanic Zorica; Radojevic Katarina; Nacka Aleksic Mirjana; Leposavic Gordana*
来源:Neuroimmunomodulation, 2014, 21(4): 161-182.
DOI:10.1159/000355349

摘要

Objective: Considering a causal role of androgens in thymic involution, age-related remodeling of peripheral T-cell compartments in the absence of testicular hormones was evaluated. Methods: Rats were orchidectomized (ORX) at the age of 1 month, and T-peripheral blood lymphocytes (PBLs) and splenocytes from young (75-day-old) and aged (24-month-old) rats were examined for differentiation/activation and immunoregulatory marker expression. Results: In ORX rats, following the initial rise, the counts of CD4+ and CD8+ PBLs diminished with aging. This reflected the decline in thymic export as shown by recent thymic emigrant (RTE) enumeration. Orchidectomy increased the count of both of the major T-splenocyte subsets in young rats, and they (differently from controls) remained stable with aging. The CD4+:CD8+ T-splenocyte ratio in ORX rats shifted towards CD4+ cells compared to age-matched controls. Although in the major T-cell subsets in the blood and spleen from aged ORX rats the numbers of RTEs were comparable to the corresponding values in age-matched controls, the numbers of mature naive and memory/activated cells substantially differed. Compared with age-matched controls, in aged ORX rats the numbers of CD4+ mature naive PBLs and splenocytes were reduced, whereas those of CD4+ memory/activated cells (predictive of early mortality) were increased. Additionally, in spleens from aged ORX rats, despite unaltered thymic export, CD4+CD25+FoxP3+ and natural killer T cell counts were greater than in age-matched controls. Conclusion: (i) Age-related decline in thymopoietic efficacy is not dependent on androgen presence, and (ii) androgens are involved in the maintenance of peripheral T-cell (particularly CD4+ cell) homeostasis during aging.

  • 出版日期2014