摘要

High-Cr ferritic/martensitic (FM) steels are being considered for applications as fuel cladding or core structures for Generation-IV reactors. Because high temperatures approaching 923-973 K (650-700 degrees C) are envisioned in the designs of Generation IV reactors, irradiation response of high-Cr FM steels at the high temperatures requires investigations. Response of two high-Cr FM steels P92 and 11Cr to irradiation at 973 K (700 degrees C) was investigated through Ar ion irradiation in combination with damage simulations, nanoindentation measurements and microstructure analyses. Irradiation hardening occurred in both steels after Ar ion irradiation at 973 K (700 degrees C) to 10 dpa, providing the first evidence that irradiation hardening can occur at a high irradiation temperature of 973 K (700 degrees C) in high-Cr FM steels. Argon bubbles with a very high number density and an average diameter of about 2.6-3 nm formed in the two steels after the irradiation. The irradiation hardening occurred in the two steels is attributed to the formation of these high-number-density fine argon bubbles produced by the irradiation homogeneously distributed in the matrix. Difference in the magnitude of irradiation hardening between the two steels was also discussed.