Association of protein phosphatase 1 gamma(1) with spinophilin suppresses phosphatase activity in a Parkinson disease model

作者:Brown Abigail M; Baucum Anthony J; Bass Martha A; Colbran Roger J*
来源:JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283(21): 14286-14294.
DOI:10.1074/jbc.M801377200

摘要

Sustained nigrostriatal dopamine depletion increases the serine/ threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr(286) phosphorylation of calcium/calmodulin-dependent protein kinase II alpha ( CaMKII alpha). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks to 10 months significantly reduces the total activity of protein phosphatase ( PP) 1, but not of PP2A, in whole lysates of rat striatum, as measured using multiple substrates, including Thr(286)-autophosphorylated CaMKII alpha. Striatal PP1 activity is partially inhibited by a fragment of the PP1-binding protein neurabin-I, Nb-(146-493), because of the selective inhibition of the PP1 gamma(1) isoform. The fraction of PP1 activity that is insensitive to Nb-(146-493) was unaffected by dopamine depletion, demonstrating that dopamine depletion specifically reduces the activity of PP1 isoforms that are sensitive to Nb-( 146-493) ( i. e. PP1 gamma(1)). However, total striatal levels of PP1 gamma(1) or any other PP1 isoform were unaffected by dopamine depletion, and our previous studies showed that total levels of the PP1 regulatory/ targeting proteins DARPP-32, spinophilin, and neurabin were also unchanged. Rather, co-immunoprecipitation experiments demonstrated that dopamine depletion increases the association of PP1 gamma(1) with spinophilin in striatal extracts. In combination, these data demonstrate that striatal dopamine depletion inhibits a specific synaptic phosphatase by increasing PP1 gamma(1) interaction with spinophilin, perhaps contributing to hyperphosphorylation of synaptic proteins and disruptions of synaptic plasticity and/or dendritic morphology.

  • 出版日期2008-5-23