摘要

We propose a scheme to realize a (2+1)-dimensional vectorial Thirring model in a coherent atomic system via electromagnetically induced transparency (EIT). We show that under EIT conditions the probe field envelopes obey coupled nonlinear Schrodinger equations, which are reduced to a Thirring model when system parameters are suitably chosen. We present spatial soliton-pair solutions exhibiting many interesting features, including controllability (i.e., the soliton property of one component can be adjusted by the propagation constant of another component in which the soliton remains unchanged), diversity (i.e., many different types of soliton-pair solutions can be found, including bright-bright, dark-bright, dark-dark, darklike-dark, dark-dipole, darklike-multidark, and high-dimensional bright-bright, dark-darklike soliton pairs), and stability. Furthermore, we demonstrate that the stability of soliton pairs in the system can be strengthened by adjusting the propagation constant. Comparing with previous studies, in addition to supporting much more stable (1+1)-dimensional and (2+1)-dimensional spatial soliton-pair solutions, the present scheme needs only a single atomic species and hence is easy to realize experimentally.