Decoupling the effects of confinement and passivation on semiconductor quantum dots

作者:Rudd Roya; Hall Colin; Murphy Peter J; Reece Peter J; Charrault Eric; Evans Drew*
来源:Physical Chemistry Chemical Physics, 2016, 18(29): 19765-19772.
DOI:10.1039/c6cp03438a

摘要

Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

  • 出版日期2016-8-7